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Abstract
Finding the global probabilistic nature of a non-equilibrium circadian clock is
essential for addressing important issues of robustness and function. We have
uncovered the underlying potential energy landscape of a simple
cyanobacteria biochemical network, and the corresponding flux which is the
driving force for the oscillation. We found that the underlying potential
landscape for the oscillation in the presence of small statistical fluctuations is
like an explicit ring valley or doughnut shape in the three dimensional protein
concentration space. We found that the barrier height separating the
oscillation ring and other area is a quantitative measure of the oscillation
robustness and decreases when the fluctuations increase. We also found that
the entropy production rate characterizing the dissipation or heat loss
decreases as the fluctuations decrease. In addition, we found that, as the
fluctuations increase, the period and the amplitude of the oscillations is more
dispersed, and the phase coherence decreases. We also found that the
properties from exploring the effects of the inherent chemical rate
parameters on the robustness. Our approach is quite general and can be
applied to other oscillatory cellular network.

PACS Codes: 87.18.-h, 87.18.Vf, 87.18.Yt

1.Introduction
Circadian rhythms are an intracellular timing mechanism, widespread in living organisms, with

a period of about 24 h, which fits the day/night alterations of the Earth adapting to the fluctuat-

ing environment. In Neurospora, Arabidopsos, Drosophila, and mammals, transcription-trans-

lation-derived oscillations originating from negative feed back regulation of clock genes have

been modeled at the molecular level. The study of the oscillation behavior in an integrated and
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coherent way is crucial in modern systems biology for understanding how these rhythms func-

tion biologically. The underlying natures of the rhythmic behavior have been explored by many

experimental and theoretical methods[1,2]. However, there are so far limited theoretical studies

to explain biological oscillation behavior from global and physical perspectives.

We decided to explore an established basic model based on known biological and biochemi-

cal features of a circadian clock which has negative regulation [1,2]. In this system, the PER pro-

tein represses the transcription of its own gene, per. The core model for this circadian rhythm is

shown in Fig. 1. The per gene is expressed in the nucleus and transcribed into per messenger

(mRNA). Next, the mRNA is transported into the cytosol and translated into PER protein (Pc).

The protein is then transported into the nucleus and becomes the nuclear form PN in a reversible

manner. Finally, PN represses the transcription of the gene. Effectively, therefore, the network is

like a self repression with time delay, in which oscillation behavior is expected.

It is important to demonstrate the robustness and stability issues of the circadian system and

associated oscillation patterns. There are many possible states in the systems, and it is difficult to

explore all of them and the associated global nature of the network [3-12]. Fortunately, not all

the states have the same weights or probabilities of occurring, due to the intrinsic statistical fluc-

tuations from the finite number of molecules in the cell and external fluctuations from highly

dynamical and inhomogeneous environments in the cell [13-20].

ModelFigure 1
Model. Model for the molecular mechanism of circadian rhythms in Drosophila.
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Therefore, instead of the averaged deterministic network of chemical rate equations, we devel-

oped a probabilistic description to model the corresponding cellular process taking into accounts

of the intrinsic and external fluctuations. This can be realized by constructing a master equation

for the intrinsic fluctuations or the diffusion equation for external fluctuations of the time

dependent evolution probability rather than the average concentration for the corresponding

deterministic chemical reaction network equations[16,21-25]. Even for the intrinsic fluctuations,

we can simplify the master equation into a Fokker-Plank diffusion-like equation in the weak

noise limit representing typical kinetic Markovian behavior with concentration dependent diffu-

sion coefficients[26]. So here we use the diffusion equation to approximate the system probabi-

listically under the influence of either internal or external fluctuations.

By solving the Fokker-Plank diffusion equation, we can obtain the probability distribution in

protein concentrations evolving in time. We can also uncover the long-time steady-state proba-

bility of this chemical reaction network in analogy to the equilibrium system, where the global

thermodynamic properties can be explored using the inherent interaction potentials. We will

study the global stability by exploring the underlying potential landscape for the above-men-

tioned non-equilibrium protein network. The generalized potential energy can be shown to be

closely associated with the steady state probability of the non-equilibrium network in general

and has been applied to a few systems[3-12,21,22,27-29]. Once the network problem is formu-

lated in terms of the generalized potential function or potential landscape, the issue of the global

stability or robustness is much easier to address[8,30]. We notice that although the individual

averaged deterministic trajectories of a non-linear chemical reaction system might be very chaotic

and complex, the corresponding statistical probabilistic distributions or the underlying land-

scapes which are dictated by the linear evolution equations (master equations or diffusion equa-

tions), are usually quite ordered and can often be characterized globally.

The adaptive landscape idea was first introduced into biology by S. Wright, Delbruck and

Waddington [31-34]. However, the link between the dynamics and the probabilistic landscape

is not clear in that work. Energy landscape ideas were pushed forward by Hans Frauenfelder [35]

on protein dynamics and then P. G. Wolynes and J. N. Onuchic [36] on protein folding and inter-

actions [37]. These ideas on proteins were based on an equilibrium approach and on knowing

the potentials a priori. For a non-equilibrium system, the potential landscape is not known a pri-

ori and needs to be uncovered. In fact it is the purpose of this paper to study the global robustness

of oscillation with respect to the fluctuations in the cell, directly using the properties of the non-

equilibrium potential landscape, which is linked to the steady state probability of the network.

This provides a basis for exploring the global and physical mechanism of biochemical oscillation.

A deterministic mathematical model of this protein clock constrained by experimental data

has been proposed recently [2]. For the protein network, based on Michaelis-Menten enzyme

kinetic equations, one can derive a set of differential equations which describe the variation rate
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of each component's concentration in the network. This leads to three independent simplified

equations [2]:

where M is the concentration of of the clock gene mRNA, Pc is the concentration of the

cytosolic protein, and PN is the concentration of the nuclear forms of the clock protein. The

parameter vs represents maximum rate of transcription, and vm is the maximum rate of transfer

into the cytosol, with the Michaelis constant km. kI is the threshold beyond which the nuclear pro-

tein represses the transcription of per gene. The Hill coefficient n characterizes this repression. ks

is the rate of protein synthesis, and vd is the maximum rate of protein degradation, with Michaelis

constant kd. k1 and k2 are the first-order rate characterizing the transport of the protein into and

out of the nucleus. The negative autoregulatory feedback is the origin of the oscillations.

As mentioned, the statistical fluctuations may be significant from both internal and external

sources [13-20] and in general can not be ignored. We can now formulate the Fokker-Plank dif-

fusion equation for the time evolution of the probability distributions of protein concentrations

for M, Pc and PN:

where D is the diffusion coefficient tensor(or matrix); here we use a uniform isotropic diago-

nal matrix for simplicity. We set vector x = (M, Pc, PN). We can rewrite the diffusion equation as

 + ·J(x, t) = 0 and define the flux vector of the system as:

dM
dt

v
kIn

kIn PN
n

v
M

km M

F M Pc P

s m

N

=
+

−
+

= 1( , , )

(1)

dPc
dt

k M v
Pc

kd Pc
k Pc k P

F M Pc P

s d N

N

= −
+

− +

=

1 2

2( , , )

(2)

dPN
dt

k Pc k P F M Pc PN N= − =1 2 3( , , ) (3)

∂
∂

= − ∂
∂

∗ − ∂
∂

∗

− ∂
∂

P M Pc PN t
t M

F M Pc P P
Pc

F M Pc P PN N
( , , , )

[ ( , , ) ] [ ( , , ) ]1 2

PPN
F M Pc P P D

P

M

D
P

Pc
D

P

PN

N[ ( , , ) ] ( )

( ) ( )

3

2

2

2

2

2

2

∗ + ∗ ∂

∂

+ ∗ ∂

∂
+ ∗ ∂

∂

(4)

∂
∂
P
t

Page 4 of 19
(page number not for citation purposes)



PMC Biophysics 2008, 1:7 http://www.physmathcentral.com/1757-5036/1/7
or in the component notation, J1(M, Pc, PN, t) = F1(M, Pc, PN)P - , J2(M, Pc, PN, t) =

F2(M, Pc, PN)P -  and J3(M, Pc, PN, t) = F3(M, Pc, PN)P -  is the steady state prob-

ability flux when ·J(x, t) = 0. It is obvious that in the steady state the divergence of J must van-

ish. One can not conclude, however, that J itself must vanish. Only in the equilibrium situation

where the systems satisfy detailed balance, J = 0. For the non-equilibrium system in general, the

steady state contains a circulating flow with nonzero curl. This is because .

Therefore, . Pss stands for steady state proba-

bility. Although F in general can not be represented as a potential gradient, the driving force for

the dynamics can be decomposed to two terms for non-equilibrium network systems: one is asso-

ciated with the gradient of a potential closely linked to the steady state probability and the other

is associated with a divergent free field. The divergent free field has no sources or sinks to start or

end the force lines and therefore is recurrent or rotational in nature [12].

Once we solve for the steady state probability from the probabilistic diffusion equation, we

can study the underlying properties of the potential (or potential landscape) by the relation: U(x)

= -ln P(x) [4,6-12,22,28]. We use this relationship for our non-equilibrium systems (with no

detailed balance, or equivalently F  -U) in analogy with equilibrium systems. However, unlike

in equilibrium systems where only the steady-state probability is needed to characterize the glo-

bal properties of the whole system, in non-equilibrium systems both the underlying landscape

and the associated flux are essential for characterizing the global steady state properties as well as

the dynamics of the protein network.

2. Results and discussion

The parameter values are vs = 0.5 nMh-1, vm = 0.3 nMh-1, vd = 1.5 nMh-1, ks = 2.0 h-1, k1 = 0.2 h-1, k2

= 0.2 h-1, km = 0.2 nM, kI = 2.0 nM, kd = 0.1 nM, n = 4. The limit cycle for these values is attractive.

We solve the Fokker-plank equation using both the reflecting boundary condition J = 0 and

the absorbing boundary condition. The results are similar; we choose the reflecting boundary

condition in this paper. With certain initial conditions(both homogeneous and inhomogene-

ous), we obtain the steady probability distribution solution Pss using the finite difference method

at the long time limit. Then, we can use U(x) = -ln Pss(x) to get the generalized non-equilibrium

potential function (landscape) of the circadian clock.

J t P P( , )x F D
x

= − ∂
∂

(5)

D PM
∂

∂

D PPc
∂

∂
D PPN

∂
∂

J

J F D xss ss ssP P= − ⋅ ∂
∂

F D J D J D Jx x x= ⋅ + = − ⋅ − + = − ⋅ +∂
∂

∂
∂

∂
∂P P P P P Uss ss ss ss ss ss ss ss/ / ( ln ) / / PPss)
Page 5 of 19
(page number not for citation purposes)



PMC Biophysics 2008, 1:7 http://www.physmathcentral.com/1757-5036/1/7
In order to see the results clearly, we can integrate the three dimensional probability P(M, Pc,

PN, t  ) to reduce the dimension to two. We use the formulas:

The integrated results are shown in Fig. 2. The red solid lines represent the deterministic solu-

tion of the system. We can see the potential landscape is an irregular inhomogeneous ring (the

values of the potentials are represented in different colors with lower potentials in blue color) or

Mexican hat like shape along the determined trajectory.
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Integrated 2 dimensional potential landscapeFigure 2
Integrated 2 dimensional potential landscape. The integrated two dimensional effective landscapes for the 
three dimensional system.
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Fig. 3A (left panel) shows that the potential landscape U has a distinct closed irregular and

inhomogeneous closed doughnut-like shape. In order to see clearly, we only plot only where U

 25, while U > 25 is transparent. The closed doughnut is around the deterministic solution

which represents the lower potential and corresponding higher probability along the oscillation

trajectories. The potential is higher (and the probability is lower) outside the doughnut; this

means the system is attracted to the doughnut. We found that the potential landscape distributes

along the oscillation ring inhomogeneously. The potential is lower for states at which the system

stays longer, which is determined by the speed at which the system passes through each state in

the averaged deterministic oscillation. So the potential landscape and the steady state probability

along the oscillation are not uniform due to the inhomogeneity of the time spent on each state

(or the passing speed at that state) of the oscillation ring. As shown in Fig. 3B (right panel), we

also observe the doughnut of the potential landscape is thicker or fatter and the values of the

potential landscape along the limit cycle become comparable to or even smaller than the outside

of the limit cycle when the diffusion coefficient D increases. A further increase in the fluctuations

will eventually destroy circadian rhythmicity. This is because the attraction of the limit cycle

becomes weaker and the time spent on the limit cycle becomes shorter. The system transforms

from a clear, robust oscillation under small fluctuations to no oscillation under high fluctua-

tions.

We can clearly see the probability distribution is not distributed evenly along the limit cycle.

In order to know the nature of attractive nature of the limit cycle, we have to observe the dynam-

ics of the network. The deterministic oscillation for the three variables M, Pc, and PN over a period

are shown in Fig. 4(A). The forces on M, Pc, and PN over the period are shown in Fig. 4(B). The

speed along the cycle is shown in Fig. 4(C). Fig. 4(D) shows the corresponding limit cycle with

3 dimensional potential landscapeFigure 3
3 dimensional potential landscape. The three dimensional potential landscape and flux for D = 1e - 5 (A) on the 
left panel and potential landscape for D = 1e - 3 (B) on the right panel.
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the time marks. The sign 'star' on the limit cycle shows where the values of the force and the speed

have been denoted at given times. The speed along the limit cycle has two maxima, at which the

amount of time spent will be smaller than at other part of the phase space. Thus, the steady prob-

ability distribution is larger at the slower speed[1].

The divergence of the flux is equal to zero at steady state. In an equilibrium system, the flux J
= 0 (detailed balance). But in a non-equilibrium system, the flux is a curl field (J =  × A in three

dimensions where A is a vector field). Fig. 3(A) (left panel) shows the probability flux on the

closed ring landscape of the limit cycle. We can see clearly the direction of the flux near the ring

is parallel to the oscillation path, like a curl.

So the flux force is the driving force for the oscillation. The potential landscape attracts the sys-

tem to the closed ring and the flux force keeps the probability flow along the ring, providing the

driving force for oscillation. We can see that the flux force plays a more important role along the

SpeedFigure 4
Speed. A: the deterministic oscillation for the three variables M, Pc and PN over a period. B: the forces of M, Pc and 
PN over the period. C: the speed along the cycle with time. The 'star' time parameters are as follows:t1 = 3.8, t2 = 8.5, 
t3 = 15.5, t4 = 21.2. D:The speed along a limit cycle: the 'star' time parameters are the same as Fig. 4C.
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closed ring than outside the ring because of large U-type forces. Therefore, the interplay of the

landscape and the flux force is the most important characteristic for a non-equilibrium system.

We can explore the global stability and robustness of the circadian clock when we obtain the

potential landscape. The barrier height represents the system escaping from the oscillation attrac-

tor. Fig. 5 shows the barrier height versus the diffusion coefficient D. Barrier1 is equivalent to Ufix

minus Umax, and Barrier2 is equivalent to Ufix minus Umin, where Ufix is the potential local maxi-

mum inside the limit cycle; Umax is the potential maximum along the limit cycle; and Umin is the

potential minimum along the limit cycle. We can see the barrier height becomes larger when the

fluctuations decrease. It is harder for the system to go from the doughnut of attraction to outside

when fluctuations are small. This means the doughnut shape of the landscape is robust, and a

stable oscillation is essentially guaranteed for small fluctuations. It also implies that the barrier

height can be used as a quantitative measure of the stability and robustness of the network oscil-

lations.

BarrierFigure 5
Barrier. The barrier height Barrier1 = Ufix - Umin and Barrier2 = Ufix - Umax versus diffusion coefficient D.
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In a non-equilibrium open system, there are constant exchanges of energy and information

with the outside environment. This results in the dissipation of energy, which gives a global phys-

ical characterization of the non-equilibrium system. The circadian clock is a non-equilibrium

open system. In the non-equilibrium steady state, the system still dissipates energy and entropy

which can be determined using the landscape and the flux globally, where the entropy produc-

tion rate is equal to heat dissipation. In the steady state, the dissipation of energy is closely asso-

ciated with the entropy production rate. The entropy formula for the system is given as [38]

                S = -kB  P(x, t)ln P(x, t)dx.                                                                                                                 (7)

By differentiating the above function, the increase of the entropy at constant temperature T is

shown as follows:

where ep = -(kBT ln P - F)·J dx is the entropy production rate [38], and hd =  F·J dx is the

mean rate of the heat dissipation. For a steady state,  = 0, and the entropy production ep is equal

to the heat dissipation hd. In Fig. 6(A), we can see the dissipation (entropy production rate)

decrease as the diffusion coefficient characterizing the fluctuations decreases; this shows that

robust oscillation with less fluctuation dissipates less energy and is more stable. From Fig. 6(B),

we also find that less dissipation leads to higher barrier heights for escaping from the oscillation

cycle and therefore a more stable network. So, minimization of the dissipation cost might serve

as a design principle for evolution of the network because the entropy production is a global

characterization of the circadian network; it is intimately related to the robustness of the network.

The robustness of the oscillation with respect to the diffusion coefficient D can be quantified

further by the phase coherence , which measures the degree of periodicity of the time evolution

of a given variable[39]. The phase coherence  quantitatively measures the degree of persistence

of the oscillatory phase, and is defined as follows: First, the vector N(t) = n1(t)e1 + n2(t)e2 + n3(t)e3

is shown in Fig. 7. The unit vectors are e1 = (0, 1), e2 = (- /2, -1/2) and e3 = (- /2, 1/2), where

n1(t), n2(t), and n3(t) are the concentrations of the three kinds of protein molecules at time t. (t)

is the phase angle between N(t) and N(t + ), where  should be smaller than the deterministic

period and larger than the fast fluctuations. We choose  = 0.2 k-1. The oscillation goes in the pos-

itive orientation (counterclockwise), so (t) > 0. The formula for  is then:

TS k T P dx

k T P dx dx

B

B

 = ∗ + ∇ ⋅

= − ∇ − ⋅ − ⋅

∫
∫∫

(ln )

( ln )

1 J

F J F J
(8)

S

3 3
Page 10 of 19
(page number not for citation purposes)



PMC Biophysics 2008, 1:7 http://www.physmathcentral.com/1757-5036/1/7
EPRFigure 6
EPR. A:The diffusion coefficient D versus the entropy production rate. B:The barrier height Barrier1 = Ufix - Umin and 
Barrier2 = Ufix - Umax versus the entropy production rate.
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where () = 1 when (t) > 0, and () = 0 when (t)  0, and sums are taken over every time

step for the simulated trajectory.   0 means the system moves stochastically and has no coher-

ence. The oscillation is most coherent when  is close to 1. The value of  becomes larger when

the fluctuations are smaller, since the trajectories are more periodic in their evolution. Fig. 8(A)

shows  decreases as the the diffusion coefficient increases, implying that the coherence of the

oscillation can be destroyed by fluctuations. Conversely, less fluctuation yields a more coherent,

robust, and stable system. We also see that  becomes larger with a lower heat loss or entropy

production rate, and conclude that less dissipation leads to more coherence. We further see that

 increases with barrier height (Fig. 8(B)). This shows that a less dissipated network tends to pre-

serve the coherence of the oscillations.

We can also use stochastic simulations for various values of D to illustrate the robustness of

circadian oscillation. We solve the chemical reaction network equations under the fluctuations

which reflect external noise. To assess the effect of molecular noise on circadian oscillations, we

have used stochastic Brownian dynamics to perform stochastic simulations of the deterministic

model governed by equations(1–3). Fig. (9A and 9B) shows the distributions of the period of

oscillations calculated for 2000 successive cycles. We can see that, when the fluctuations increase,

the distribution becomes more spread out, but the mean period and mean amplitude are still

close to the deterministic period of the oscillations. In Fig. 9(C), the standard deviation  from

the mean increases when the fluctuations increase[1,2]. This implies that less fluctuations lead to

ξ
θ φ φ
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∑
−

2
1

( ( )) ( )

| ( )|

t ti
ti
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CoherenceFigure 8
Coherence. A: The coherence versus the diffusion coefficient D and entropy production rate. B: The coherence 
versus the Barrier height.
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more coherent oscillations. We also see that the period distribution becomes less dispersed when

the entropy production rate decreases. This shows that a less dissipated network can lead to a

more coherent oscillation with a unique period instead of a distribution of periods. In Fig. 9(D),

we see that higher barrier heights lead to less dispersed period distributions.

We also show the distributions of the amplitude for M with increasing D. We can see the dis-

tribution becomes more dispersed but stays close to the deterministic value as the fluctuations

increase in Fig. 10(A). The standard deviation  increases when D goes up in Fig. 10(B), again

showing less fluctuations leading to more robust oscillations.

To explore the effects of the inherent chemical rate parameters on the robustness, we can try

to find out which reactions are important, and further, which protein elements are crucial in

maintaining the robustness. Fig. 11(A) shows the effects of rate parameters on the robustness.

The six rate parameters increase by twenty percent (red), and decrease by twenty percent (green).

The bars show the change in barrier height for different parameters. q is the percentage by which

the rate constants are increase or decreased. Fig. 11(B) shows the barrier height (solid line) and

PeriodFigure 9
Period. A: The period distribution for D = 0.02. B: The period distribution for D = 0.1. C: The diffusion coefficient 
D versus the standard deviation of period Period and the entropy production rate. D: The standard deviation of 
period Period versus the barrier height.
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the entropy production rate (dashed line) versus the six rate parameters. We can see that when

the rate parameters k1 and vm increase, the barrier height increases and the entropy production

rate decreases, as the system becomes more stable and robust. We can also see that when the

other four rate parameters (k2, ks, vd, vs) increase, the barrier height decreases and the entropy pro-

duction rate increases as the system becomes less stable and robust.

We can choose the rates ks and vm to further explore the period and amplitude using stochastic

Brownian dynamics, since they represent the largest changes of the barrier height from the

increasing the rate parameters. Fig. 12(A) shows the amplitude distribution for different ks rates.

Fig. 12(B) shows the amplitude center and the standard deviation  both decrease when the rate

ks increase. Fig. 12(C) shows the period distribution for different ks rates and Fig. 12(D) shows

the period center decrease and the standard deviation  increase when the rate ks increase. This

implies that the fluctuations in period measured by the variance increase as the ks increases.

Therefore the network becomes less stable and coherent due to the trend of larger fluctuations.

Fig. 13(A) shows the amplitude distribution for different vm rate. Fig. 13(B) shows the ampli-

tude center and the standard deviation  both decrease when the rate vm increase. Fig. 13(C)

shows the period distribution for different vm rate and Fig. 13(D) shows the period center and the

standard deviation  both decrease when the rate vm increase. This implies that the fluctuations

in period and amplitude measured by the variance decrease as the vm increases. Therefore the net-

work become more stable and coherent due to the trend of smaller fluctuations.

AmplitudeFigure 10
Amplitude. A: The amplitude distribution with different D. B: The standard deviation of amplitude  versus the D.
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2.1. Mathematical material
We can study the network of chemical reactions in fluctuating environments:

where x = {x1(t), x2(t), ... xn(t)} is the concentration vector, with each component of which

representing different protein species in the network. The F(x) = {F1(x), F2(x), ... Fn(x)} is the

x F x= +( ) z (10)

Barrier height and entropy production versus chemical rate parametersFigure 11
Barrier height and entropy production versus chemical rate parameters. A: Barrier changes with respect 
to changes of rate parameters (red: rate increase. green: rate decrease) k1, k2, ks, vm, vd, and vs. B. Barrier height and 
entropy production rate versus chemical rate parameters k1, k2, ks, vm, vd, and vs.
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chemical reaction rate flux vector involving the chemical reactions which are often non-linear in

protein concentrations x (for example, enzymatic reactions). The equations  = F(x) describe the

averaged dynamical evolution of the chemical reaction network (see details in the next subsec-

tion). As mentioned, in the cell, the fluctuations can be very significant from both internal and

external sources [40-44] and in general can not be ignored. A term  is added mimicking these

fluctuations in an assumed Gaussian distribution (from the large-number theorem in statistics).

Then the auto correlations of the noise is given by:

                                     < (x, t) (x', t') >= 2D(x, t) (t - t').                                                   (11)

x

Amplitude and period distribution changes with respect to rate ksFigure 12
Amplitude and period distribution changes with respect to rate ks. A: Amplitude distribution for different 
ks rate. B: Amplitude center and the standard deviation  versus chemical rate ks. C: Period distribution for different 
ks rates. D: Period center and the standard deviation  versus rate ks.
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Here (t) is the Dirac delta function and the diffusion matrix D is explicitly defined by

<i(t)j(t') >= 2Dij(t - t'). The average <...> is carried out with the Gaussian distribution for the

noise. Therefore, we realize that the resulting evolution trajectories of the protein concentrations

are stochastic. So instead of following the determinist path of probability equal to one, we now

need to quantify the probability of specific paths. The probabilistic description is more appropri-

ate for the system under fluctuating environments. The probabilistic evolution follows a Fokker-

Planck diffusion equation as discussed in the main text.

We can explore the long time steady state properties and collect the statistics to obtain the

steady state distribution function P0(x) for the state variable x (representing the protein concen-

trations of the protein network in this case). In the equilibrium systems where a potential U

where the force is a gradient of it, P0(x) is exponentially related to potential energy function U(x).

Amplitude and period distribution changes with respect to rate vmFigure 13
Amplitude and period distribution changes with respect to rate vm. A: Amplitude distribution for different 
chemical rates vm. B: Amplitude center and the standard deviation  versus the rate vm. C: Period distribution for 
different vm rates. D: Period center and the standard deviation  versus the rate vm.
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So we obtain the information of steady state probability from U. For the non-equilibrium system,

we do not know the information of the potential a priori. But we can obtain the information of

the steady state probability by solving the probabilistic evolution equation and taking the long

time limit. In analogy with the equilibrium system, we can define the generalized potential U for

the non-equilibrium case from the steady state probability [4,6,7,9,10,22,28]:

with the partition function Z =  dx exp{-U(x)}. The rational for the definition of the non-

equilibrium potential this way is given earlier in the main text due to the driving force (for the

dynamics) decomposition as gradient of a potential and curl flux. From the steady-state distribu-

tion function, we can therefore identify U as the generalized potential function of the network

system. In this way, we map out the potential landscape. Once we have the potential landscape,

we can discuss the global stability of the protein cellular networks.

3. Conclusion
We have shown that we can explore the global features of the circadian rhythms model. Finding

the potential landscape and associated flux is the key to addressing the robustness issue of the

networks. We have uncovered the underlying potential landscape of a circadian clock. This is

realized by explicitly constructing the probability of the states of the protein network by solving

the corresponding probabilistic diffusion equation. The landscape of the oscillation has an irreg-

ular and inhomogeneous closed ring valley or doughnut-like shape. We also found that the flux

along the cycle path is the driving force for coherent oscillation. The potential barrier height for

escaping from the limit cycle attractor determines the robustness and stability of the network

oscillations. We found as the diffusion coefficient becomes smaller, the potential barrier

becomes greater, and furthermore the statistical fluctuations are effectively more severely sup-

pressed. This leads to robustness of the biological limit cycle basin of the protein network.

We observe the global dissipation in terms of the entropy production of the whole system

increases when the diffusion coefficient D increases. The period and the amplitude distribution

becomes widely dispersed when D increases, and the phase coherence decreases. These are three

ways of characterizing the robustness of the oscillation in addition to the barrier height measure

from the basin of the attraction. Low entropy production might serve as a design principle for

robust networks.

The robustness, coherence, and dissipation of the circadian oscillations with respect to the

changes with the rate parameters can be studied as well. And we found protein element ks is cru-

cial in maintaining the robustness in the network.

P
Z

U0
1

( ) exp{ ( )},x x= − (12)
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